Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers
نویسندگان
چکیده
منابع مشابه
Combining SVM Classifiers for Handwritten Digit Recognition
In this paper, we investigate the advantages and weaknesses of various decision fusion schemes using statistical and rule-based reasoning. The cooperation schemes are applied on two SVM (Support Vector Machine) classifiers performing classification task on two feature families referenced as structural and statistical features. The obtained results show that it is difficult to exceed the recogni...
متن کاملCombining SVM and Rule-Based classifiers for optimal classification in breast cancer diagnosis
Mammography is accepted as the most effective method to detect breast cancer. Breast microcalcifications are considered very important findings, which may be associated to the existence or not of breast cancer. It has been proven that in some cases the evaluation of their characteristics contributes to the early diagnosis of breast cancer. A computer aided diagnosis (CAD) system has been alread...
متن کاملComputer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE
In lung cancer computer-aided detection/diagnosis (CAD) systems, classification of regions of interest (ROI) is often used to detect/diagnose lung nodule accurately. However, problems of unbalanced datasets often have detrimental effects on the performance of classification. In this paper, both minority and majority classes are resampled to increase the generalization ability. We propose a nove...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملCombining classifiers for face recognition
Current two-dimensional face recognition approaches can obtain a good performance only under constrained environments. However, in the real applications, face appearance changes significantly due to different illumination, pose, and expression. Face recognizers based on different representations of the input face images have different sensitivity to these variations. Therefore, a combination of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2011
ISSN: 1875-6891,1875-6883
DOI: 10.1080/18756891.2011.9727845